The Eilenberg-Moore Category and a Beck-type Theorem for a Morita Context
نویسندگان
چکیده
The Eilenberg-Moore constructions and a Beck-type theorem for pairs of monads are described. More specifically, a notion of a Morita context comprising of two monads, two bialgebra functors and two connecting maps is introduced. It is shown that in many cases equivalences between categories of algebras are induced by such Morita contexts. The Eilenberg-Moore category of representations of a Morita context is constructed. This construction allows one to associate two pairs of adjoint functors with right adjoint functors having a common domain or a double adjunction to a Morita context. It is shown that, conversely, every Morita context arises from a double adjunction. The comparison functor between the domain of right adjoint functors in a double adjunction and the Eilenberg-Moore category of the associated Morita context is defined. The sufficient and necessary conditions for this comparison functor to be an equivalence (or for the moritability of a pair of functors with a common domain) are derived.
منابع مشابه
Applications of the Kleisli and Eilenberg-Moore 2-adjunctions
In 2010, J. Climent Vidal and J. Soliveres Tur developed, among other things, a pair of 2-adjunctions between the 2-category of adjunctions and the 2-category of monads. One is related to the Kleisli adjunction and the other to the Eilenberg-Moore adjunction for a given monad.Since any 2-adjunction induces certain natural isomorphisms of categories, these can be used to classify bijection...
متن کاملON THE CAPACITY OF EILENBERG-MACLANE AND MOORE SPACES
K. Borsuk in 1979, at the Topological Conference in Moscow, introduced concept of the capacity of a compactum and asked some questions concerning properties of the capacity ofcompacta. In this paper, we give partial positive answers to three of these questions in some cases. In fact, by describing spaces homotopy dominated by Moore and Eilenberg-MacLane spaces, the capacities of a Moore space $...
متن کاملWide Morita Contexts in Bicategories
We give a formal concept of (right) wide Morita context between two 0-cells in arbitrary bicategory. We then construct a new bicategory with the same 0-cells as the oldest one, and with 1-cells all these (right) wide Morita contexts. An application to the (right) Eilenberg-Moore bicategory of comonads associated to the bimodules bicategory is also given.
متن کاملKleisli and Eilenberg-Moore Constructions as Parts of Biadjoint Situations
We consider monads over varying categories, and by defining the morphisms of Kleisli and of Eilenberg-Moore from a monad to another and the appropriate transformations (2-cells) between morphisms of Kleisli and between morphisms of Eilenberg-Moore, we obtain two 2-categories MndKl and MndEM. Then we prove that MndKl and MndEM are, respectively, 2-isomorphic to the conjugate of Kl and to the tra...
متن کاملAn Eilenberg–like Theorem for Algebras on a Monad
An Eilenberg–like theorem is shown for algebras on a given monad. The main idea is to explore the approach given by Bojańczyk that defines, for a given monad T on a category D, pseudovarieties of T–algebras as classes of finite T–algebras closed under homomorphic images, subalgebras, and finite products. To define pseudovarieties of recognizable languages, which is the other main concept for an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied Categorical Structures
دوره 19 شماره
صفحات -
تاریخ انتشار 2011